Threadlocal源码分析
ThreadLocal
上周我们领导和我们分享了一些Java的内存溢出问题,其中涉及到ThreadLocal引用对象内存溢出的情况。但是因为当时没读过源码,听得一知半解,这里读一下ThreadLocal的源码好了。本文的源码是来自OpenJDK 1.8中的内容。
首先什么是ThreadLocal,ThreadLocal可以作为一个线程独有的对象的一个容器,每个线程在通过get
方法访问ThreadLocal内部包装的对象时得到结果可能是不同的。
ThreadLocal的玩法一般有两类:
- 将一些创建费时,且不是线程安全的对象放到里面去。这样就能为每个线程仅创建一个对象,加快程序的执行速度。比如
SimpleDateFormat
就是一个很好的例子。 - 在ThreadLocal放入当前上下文,常见的比如slf4j中的MDC。
由于存的东西千奇百怪,所以用个泛型不奇怪。
public class ThreadLocal<T> {
}
我们可以直接创建一个空的ThreadLocal对象,注意你不能在创建ThreadLocal的时候就把对象放进去,因为我们需要为每个线程都维护一个对象。ThreadLocal提供了一个静态工厂方法,可以在线程第一次访问的时候自动创建对象。
public class ThreadLocal<T> {
/**
* Creates a thread local variable. The initial value of the variable is
* determined by invoking the {@code get} method on the {@code Supplier}.
*
* @param <S> the type of the thread local's value
* @param supplier the supplier to be used to determine the initial value
* @return a new thread local variable
* @throws NullPointerException if the specified supplier is null
* @since 1.8
*/
public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
return new SuppliedThreadLocal<>(supplier);
}
/**
* Creates a thread local variable.
* @see #withInitial(java.util.function.Supplier)
*/
public ThreadLocal() {
}
}
看看我们怎么从ThreadLocal中拿对象。
public class ThreadLocal<T> {
/**
* Returns the value in the current thread's copy of this
* thread-local variable. If the variable has no value for the
* current thread, it is first initialized to the value returned
* by an invocation of the {@link #initialValue} method.
*
* @return the current thread's value of this thread-local
*/
public T get() {
//当前线程
Thread t = Thread.currentThread();
//拿关联当前线程的本地变量map
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
//拿到了对象,就直接返回
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
//否则初始化
return setInitialValue();
}
}
我们先看看这个线程map是个啥。
/**
* Get the map associated with a ThreadLocal. Overridden in
* InheritableThreadLocal.
*
* @param t the current thread
* @return the map
*/
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
可以看到实际上是线程的某个成员变量。
public
class Thread implements Runnable {
/* ThreadLocal values pertaining to this thread. This map is maintained
* by the ThreadLocal class. */
ThreadLocal.ThreadLocalMap threadLocals = null;
}
可以看到这个成员变量初始值为null,且构造器中也没有进行初始化,那它啥时候初始化呢。实际上它是在ThreadLocal中初始化的,奇怪啊!
public class ThreadLocal<T> {
/**
* Create the map associated with a ThreadLocal. Overridden in
* InheritableThreadLocal.
*
* @param t the current thread
* @param firstValue value for the initial entry of the map
*/
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
}
那啥时候我们的createMap会被调用呢,它会在线程第一次访问且线程的threadLocals变量为null的时候被初始化。
public class ThreadLocal<T> {
/**
* Variant of set() to establish initialValue. Used instead
* of set() in case user has overridden the set() method.
*
* @return the initial value
*/
//这个方法就是在get时候被调用的
private T setInitialValue() {
T value = initialValue();
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
return value;
}
/**
* Sets the current thread's copy of this thread-local variable
* to the specified value. Most subclasses will have no need to
* override this method, relying solely on the {@link #initialValue}
* method to set the values of thread-locals.
*
* @param value the value to be stored in the current thread's copy of
* this thread-local.
*/
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
}
在remove的时候,如果线程没有threadLocals当然就不用初始化了。
public class ThreadLocal<T> {
/**
* Removes the current thread's value for this thread-local
* variable. If this thread-local variable is subsequently
* {@linkplain #get read} by the current thread, its value will be
* reinitialized by invoking its {@link #initialValue} method,
* unless its value is {@linkplain #set set} by the current thread
* in the interim. This may result in multiple invocations of the
* {@code initialValue} method in the current thread.
*
* @since 1.5
*/
public void remove() {
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
m.remove(this);
}
}
线程的threadLocals变量,这里比较有趣的就是它用的并不是标准库的HashMap,而是自己搞的一个内部类。这玩意可不是HashMap,自然就少了红黑树那套恐怖的代码了,所以我们抱着愉快的心情读下去。
public class ThreadLocal<T> {
/**
* ThreadLocalMap is a customized hash map suitable only for
* maintaining thread local values. No operations are exported
* outside of the ThreadLocal class. The class is package private to
* allow declaration of fields in class Thread. To help deal with
* very large and long-lived usages, the hash table entries use
* WeakReferences for keys. However, since reference queues are not
* used, stale entries are guaranteed to be removed only when
* the table starts running out of space.
*/
static class ThreadLocalMap {
}
}
ThreadLocalMap中的Entry也是不同寻常,继承了WeakReference。Entry的关键字一定是ThreadLocal类型的,且弱引用的是这个key。
static class ThreadLocalMap {
/**
* The entries in this hash map extend WeakReference, using
* its main ref field as the key (which is always a
* ThreadLocal object). Note that null keys (i.e. entry.get()
* == null) mean that the key is no longer referenced, so the
* entry can be expunged from table. Such entries are referred to
* as "stale entries" in the code that follows.
*/
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
}
继续往下读。可以发现还是那经典的味道。
static class ThreadLocalMap {
/**
* The initial capacity -- MUST be a power of two.
*/
//初始大小
private static final int INITIAL_CAPACITY = 16;
/**
* The table, resized as necessary.
* table.length MUST always be a power of two.
*/
//链表头
private Entry[] table;
/**
* The number of entries in the table.
*/
//当前插了几个元素了
private int size = 0;
/**
* The next size value at which to resize.
*/
//下次扩展的阈值
private int threshold; // Default to 0
}
它暴露出去的构造器加了奇怪的参数,不太明白为啥这样写。
static class ThreadLocalMap {
/**
* Construct a new map initially containing (firstKey, firstValue).
* ThreadLocalMaps are constructed lazily, so we only create
* one when we have at least one entry to put in it.
*/
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
}
看看如何放键值对,好像put改名成set了。
static class ThreadLocalMap {
/**
* Set the value associated with key.
*
* @param key the thread local object
* @param value the value to be set
*/
private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
if (k == key) {
//找到了,直接更新值
e.value = value;
return;
}
if (k == null) {
//如果k过期了,直接就入住这里了
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
}
上面的代码可以发现,ThreadLocalMap
似乎想和HashMap
撇清关系,它甚至没有使用HashMap采用的链表法解决冲突,取而代之的是使用了开放寻址法。不过它重新寻址的函数也是有够寒酸的,直接找下一个。
static class ThreadLocalMap {
/**
* Increment i modulo len.
*/
private static int nextIndex(int i, int len) {
return ((i + 1 < len) ? i + 1 : 0);
}
}
顺便回去看看ThreadLocal中存的threadLocalHashCode
是个啥。
public class ThreadLocal<T> {
/**
* ThreadLocals rely on per-thread linear-probe hash maps attached
* to each thread (Thread.threadLocals and
* inheritableThreadLocals). The ThreadLocal objects act as keys,
* searched via threadLocalHashCode. This is a custom hash code
* (useful only within ThreadLocalMaps) that eliminates collisions
* in the common case where consecutively constructed ThreadLocals
* are used by the same threads, while remaining well-behaved in
* less common cases.
*/
private final int threadLocalHashCode = nextHashCode();
/**
* The next hash code to be given out. Updated atomically. Starts at
* zero.
*/
private static AtomicInteger nextHashCode =
new AtomicInteger();
/**
* The difference between successively generated hash codes - turns
* implicit sequential thread-local IDs into near-optimally spread
* multiplicative hash values for power-of-two-sized tables.
*/
private static final int HASH_INCREMENT = 0x61c88647;
/**
* Returns the next hash code.
*/
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
}
可以看到第$k$个创建的ThreadLocal的哈希值为$(k-1)\times 0x61c88647$。
由于使用了弱引用键,因此这里有一个问题,那就是咋做回收操作。
static class ThreadLocalMap {
/**
* Expunge a stale entry by rehashing any possibly colliding entries
* lying between staleSlot and the next null slot. This also expunges
* any other stale entries encountered before the trailing null. See
* Knuth, Section 6.4
*
* @param staleSlot index of slot known to have null key
* @return the index of the next null slot after staleSlot
* (all between staleSlot and this slot will have been checked
* for expunging).
*/
//清理某个slot
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
// Rehash until we encounter null
Entry e;
int i;
//由于是开放寻址法,因此一旦一个键被移除了,后面的所有键都需要被提升,我们循环直到找到第一个null
//这表示不可能有数被加在尾部了
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
if (k == null) {
//过期了,删了
e.value = null;
tab[i] = null;
size--;
} else {
//没过期,我们进行重哈希(它的位置可能在前面,也有可能就是这里不变)
int h = k.threadLocalHashCode & (len - 1);
if (h != i) {
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
return i;
}
}
里面还有一段神奇的代码,启发式的清理一些过期的key,这里的代码很显然不是完整的清理,感觉这些作者开始放飞自我了。这段代码在插入查找删除等map的基本操作时都会被调用,因此会将所有的基本操作的时间复杂度提高到$O(\log_2len)$,len是数组的长度。
static class ThreadLocalMap {
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
do {
i = nextIndex(i, len);
Entry e = tab[i];
if (e != null && e.get() == null) {
n = len;
removed = true;
i = expungeStaleEntry(i);
}
} while ( (n >>>= 1) != 0);
return removed;
}
}
可以发现如果一个key过期了,是不一定能保证释放的,由于是启发式清理,因此可能有些key永远不会被扫到。
但是实际上作者还是留了一手,就是在重哈希的时候做了全局的清理。
static class ThreadLocalMap {
/**
* Re-pack and/or re-size the table. First scan the entire
* table removing stale entries. If this doesn't sufficiently
* shrink the size of the table, double the table size.
*/
private void rehash() {
expungeStaleEntries();
// Use lower threshold for doubling to avoid hysteresis
if (size >= threshold - threshold / 4)
resize();
}
/**
* Expunge all stale entries in the table.
*/
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
if (e != null && e.get() == null)
expungeStaleEntry(j);
}
}
}
而重哈希仅发生在占用一个新的slot,且启发式清理没有成功,同时哈希表的大小达到阈值的时候。
static class ThreadLocalMap {
/**
* Set the value associated with key.
*
* @param key the thread local object
* @param value the value to be set
*/
private void set(ThreadLocal<?> key, Object value) {
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
}
可以看出ThreadLocalMap的代码是比较复杂的,原因是为了处理弱引用。我们来考虑有哪些情况下会发生内存泄露。由于ThreadLocalMap的唯一引用落在Thread对象中,因此只要线程未退出(比如是线程池复用的线程),这时候它的threadLocals变量也不会被清理,导致threadLocals中的所有键值对都会被保留。键值对实现了弱引用,但是弱引用的仅仅是ThreadLocal这个变量,而ThreadLocal对应的值是强引用。因此你即使将ThreadLocal设置为null也不能保证资源会被释放,而是需要调用ThreadLocal#clear()
来手动清理资源。
InheritableThreadLocal
如果我们希望子线程能使用父线程的ThreadLocal对象,该怎么办。JDK里面提供了InheritableThreadLocal
类型。它的代码非常简单
public class InheritableThreadLocal<T> extends ThreadLocal<T> {
/**
* Computes the child's initial value for this inheritable thread-local
* variable as a function of the parent's value at the time the child
* thread is created. This method is called from within the parent
* thread before the child is started.
* <p>
* This method merely returns its input argument, and should be overridden
* if a different behavior is desired.
*
* @param parentValue the parent thread's value
* @return the child thread's initial value
*/
protected T childValue(T parentValue) {
return parentValue;
}
/**
* 这里覆盖掉getMap。
* 由于一个InheritableThreadLocal可能出现在多个ThreadLocalMap*中,
* 因此我们不能在InheritableThreadLocal变量中存储自己所在的ThreadLocalMap,
* 必须实时获取。
*/
ThreadLocalMap getMap(Thread t) {
return t.inheritableThreadLocals;
}
/**
* Create the map associated with a ThreadLocal.
*
* @param t the current thread
* @param firstValue value for the initial entry of the table.
*/
void createMap(Thread t, T firstValue) {
t.inheritableThreadLocals = new ThreadLocalMap(this, firstValue);
}
}
可以发现它使用了线程中的另外一个变量inheritableThreadLocals
。看看这个变量是怎么初始化和创建的。
public
class Thread implements Runnable {
private void init(ThreadGroup g, Runnable target, String name,
long stackSize, AccessControlContext acc,
boolean inheritThreadLocals) {
...
Thread parent = currentThread();
...
if (inheritThreadLocals && parent.inheritableThreadLocals != null)
this.inheritableThreadLocals =
ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
}
}
可以发现线程在初始化的时候,如果发现父线程(负责调用初始化代码的线程)如果用需要被继承的ThreadLocal对象,那么就会创建属于自己的inheritableThreadLocals
变量并初始化。初始化的代码很简单:
public
class Thread implements Runnable {
private ThreadLocalMap(ThreadLocalMap parentMap) {
Entry[] parentTable = parentMap.table;
int len = parentTable.length;
setThreshold(len);
table = new Entry[len];
//遍历parentMap,并将所有键值对插入到新建的ThreadLocalMap中
for (int j = 0; j < len; j++) {
Entry e = parentTable[j];
if (e != null) {
@SuppressWarnings("unchecked")
ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
if (key != null) {
Object value = key.childValue(e.value);
Entry c = new Entry(key, value);
int h = key.threadLocalHashCode & (len - 1);
while (table[h] != null)
h = nextIndex(h, len);
table[h] = c;
size++;
}
}
}
}
}
可以发现inheritableThreadLocals
仅在初始化的时候会复制所有父线程的inheritableThreadLocals
,之后二者就是独立运行了,向一者的插入删除操作不会影响另外一个线程的变量,但是它们其中保存的InheritableThreadLocal
变量是相同的。