Java面试八股文学习笔记
前言
这篇博客会以基础知识,回答问题,以及阅读源码为主。
spring
spring bean的生命周期
首先spring会扫描所有的组件类,并未这些类创建对应的BeanDefinition
,BeanDefinition
中会存储这个类的所有信息,包括注解内容。
如果BeanDefinition
中记录的是单例,那么spring还会创建对应的单例对象。
在实例化对象之前,spring会检查用户是否提供了BeanFactoryPostProcessor
,如果有,则允许BeanFactoryPostProcessor
返回一个新的Bean替代原来的Bean。
Spring是默认支持单例之间的循环依赖的。由于Spring是通过递归来创建对象并处理它们的拓扑关系的,因此它提供了两个缓存earlySingletonObjects
和singletonObjects
,前者存储在创建的对象,后者存储创建完成的对象。比如A
注入B
,B
注入A
,则创建A
的时候,需要注入B
,这时候递归调用创建B
,但是由于需要向B
注入A
,这时候再次getBean(A)
的时候,会发现earlySingletonObjects
中存放了A
,这时候会直接返回A
。
下面是源码:
public class SpringApplication {
public ConfigurableApplicationContext run(String... args) {
...
try {
...
//这里会创建和初始化所有的Bean
this.refreshContext(context);
...
} catch (Throwable var10) {
...
}
...
}
}
跟踪refreshContext
方法可以得到:
public class SpringApplication {
private void refreshContext(ConfigurableApplicationContext context) {
if (this.registerShutdownHook) {
try {
//这里会注册负责关闭jvm时释放资源的钩子
context.registerShutdownHook();
}
catch (AccessControlException ex) {
// Not allowed in some environments.
}
}
//转发调用
refresh((ApplicationContext) context);
}
@Deprecated
protected void refresh(ApplicationContext applicationContext) {
Assert.isInstanceOf(ConfigurableApplicationContext.class, applicationContext);
//转发调用
refresh((ConfigurableApplicationContext) applicationContext);
}
protected void refresh(ConfigurableApplicationContext applicationContext) {
//转发的终点
applicationContext.refresh();
}
}
可以看到applicationContext.refresh()
方法会做主要工作,继续跟踪下去。
public abstract class AbstractApplicationContext extends DefaultResourceLoader
implements ConfigurableApplicationContext {
@Override
public void refresh() throws BeansException, IllegalStateException {
synchronized (this.startupShutdownMonitor) {
...
try {
...
//执行BeanFactory的后置处理器
// Invoke factory processors registered as beans in the context.
invokeBeanFactoryPostProcessors(beanFactory);
// Register bean processors that intercept bean creation.
//插入Bean的后置处理器
registerBeanPostProcessors(beanFactory);
...
// Instantiate all remaining (non-lazy-init) singletons.
//创建单例对象
finishBeanFactoryInitialization(beanFactory);
...
}
catch (BeansException ex) {
...
}
finally {
...
}
}
}
}
Spring会将所有BeanPostProcessor
的子类Bean作为后置处理器注册到BeanFactory中。具体源码如下:
public static void registerBeanPostProcessors(
ConfigurableListableBeanFactory beanFactory, AbstractApplicationContext applicationContext) {
String[] postProcessorNames = beanFactory.getBeanNamesForType(BeanPostProcessor.class, true, false);
// Register BeanPostProcessorChecker that logs an info message when
// a bean is created during BeanPostProcessor instantiation, i.e. when
// a bean is not eligible for getting processed by all BeanPostProcessors.
int beanProcessorTargetCount = beanFactory.getBeanPostProcessorCount() + 1 + postProcessorNames.length;
beanFactory.addBeanPostProcessor(new BeanPostProcessorChecker(beanFactory, beanProcessorTargetCount));
// Separate between BeanPostProcessors that implement PriorityOrdered,
// Ordered, and the rest.
List<BeanPostProcessor> priorityOrderedPostProcessors = new ArrayList<>();
List<BeanPostProcessor> internalPostProcessors = new ArrayList<>();
List<String> orderedPostProcessorNames = new ArrayList<>();
List<String> nonOrderedPostProcessorNames = new ArrayList<>();
for (String ppName : postProcessorNames) {
if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) {
BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class);
priorityOrderedPostProcessors.add(pp);
if (pp instanceof MergedBeanDefinitionPostProcessor) {
internalPostProcessors.add(pp);
}
}
else if (beanFactory.isTypeMatch(ppName, Ordered.class)) {
orderedPostProcessorNames.add(ppName);
}
else {
nonOrderedPostProcessorNames.add(ppName);
}
}
// First, register the BeanPostProcessors that implement PriorityOrdered.
sortPostProcessors(priorityOrderedPostProcessors, beanFactory);
registerBeanPostProcessors(beanFactory, priorityOrderedPostProcessors);
// Next, register the BeanPostProcessors that implement Ordered.
List<BeanPostProcessor> orderedPostProcessors = new ArrayList<>(orderedPostProcessorNames.size());
for (String ppName : orderedPostProcessorNames) {
BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class);
orderedPostProcessors.add(pp);
if (pp instanceof MergedBeanDefinitionPostProcessor) {
internalPostProcessors.add(pp);
}
}
sortPostProcessors(orderedPostProcessors, beanFactory);
registerBeanPostProcessors(beanFactory, orderedPostProcessors);
// Now, register all regular BeanPostProcessors.
List<BeanPostProcessor> nonOrderedPostProcessors = new ArrayList<>(nonOrderedPostProcessorNames.size());
for (String ppName : nonOrderedPostProcessorNames) {
BeanPostProcessor pp = beanFactory.getBean(ppName, BeanPostProcessor.class);
nonOrderedPostProcessors.add(pp);
if (pp instanceof MergedBeanDefinitionPostProcessor) {
internalPostProcessors.add(pp);
}
}
registerBeanPostProcessors(beanFactory, nonOrderedPostProcessors);
// Finally, re-register all internal BeanPostProcessors.
sortPostProcessors(internalPostProcessors, beanFactory);
registerBeanPostProcessors(beanFactory, internalPostProcessors);
// Re-register post-processor for detecting inner beans as ApplicationListeners,
// moving it to the end of the processor chain (for picking up proxies etc).
beanFactory.addBeanPostProcessor(new ApplicationListenerDetector(applicationContext));
}
创建单例对象的源码在finishBeanFactoryInitialization
中:
protected void finishBeanFactoryInitialization(ConfigurableListableBeanFactory beanFactory) {
...
// Instantiate all remaining (non-lazy-init) singletons.
//初始化单例
beanFactory.preInstantiateSingletons();
}
它转发调用了BeanFactory的preInstantiateSingletons
方法。源码如下:
@Override
public void preInstantiateSingletons() throws BeansException {
...
// Trigger initialization of all non-lazy singleton beans...
for (String beanName : beanNames) {
RootBeanDefinition bd = getMergedLocalBeanDefinition(beanName);
//只有单例、非抽象类、非懒加载的bean会被创建
if (!bd.isAbstract() && bd.isSingleton() && !bd.isLazyInit()) {
if (isFactoryBean(beanName)) {
Object bean = getBean(FACTORY_BEAN_PREFIX + beanName);
//工厂类的创建流程
if (bean instanceof FactoryBean) {
FactoryBean<?> factory = (FactoryBean<?>) bean;
boolean isEagerInit;
if (System.getSecurityManager() != null && factory instanceof SmartFactoryBean) {
isEagerInit = AccessController.doPrivileged(
(PrivilegedAction<Boolean>) ((SmartFactoryBean<?>) factory)::isEagerInit,
getAccessControlContext());
}
else {
isEagerInit = (factory instanceof SmartFactoryBean &&
((SmartFactoryBean<?>) factory).isEagerInit());
}
if (isEagerInit) {
getBean(beanName);
}
}
}
else {
//普通bean的创建
getBean(beanName);
}
}
}
...
}
很显然getBean才是核心方法,我们瞅瞅:
public <T> T getBean(String name, @Nullable Class<T> requiredType, @Nullable Object... args)
throws BeansException {
return doGetBean(name, requiredType, args, false);
}
protected <T> T doGetBean(
String name, @Nullable Class<T> requiredType, @Nullable Object[] args, boolean typeCheckOnly)
throws BeansException {
String beanName = transformedBeanName(name);
Object beanInstance;
//优先从缓存中取,避免重复构建
// Eagerly check singleton cache for manually registered singletons.
Object sharedInstance = getSingleton(beanName);
if (sharedInstance != null && args == null) {
...
}
else {
...
try {
...
// Create bean instance.
if (mbd.isSingleton()) {
//实例化
sharedInstance = getSingleton(beanName, () -> {
try {
//工厂方法
return createBean(beanName, mbd, args);
}
catch (BeansException ex) {
// Explicitly remove instance from singleton cache: It might have been put there
// eagerly by the creation process, to allow for circular reference resolution.
// Also remove any beans that received a temporary reference to the bean.
destroySingleton(beanName);
throw ex;
}
});
beanInstance = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
}
else if (mbd.isPrototype()) {
// It's a prototype -> create a new instance.
Object prototypeInstance = null;
try {
beforePrototypeCreation(beanName);
prototypeInstance = createBean(beanName, mbd, args);
}
finally {
afterPrototypeCreation(beanName);
}
beanInstance = getObjectForBeanInstance(prototypeInstance, name, beanName, mbd);
}
else {
...
}
}
catch (BeansException ex) {
...
}
finally {
...
}
}
return adaptBeanInstance(name, beanInstance, requiredType);
}
在第一次调用getSingleton
方法的时候,Spring会尝试从多个缓存中获取Bean。
public Object getSingleton(String beanName) {
return getSingleton(beanName, true);
}
protected Object getSingleton(String beanName, boolean allowEarlyReference) {
// Quick check for existing instance without full singleton lock
Object singletonObject = this.singletonObjects.get(beanName);
//如果单例处理创建中
if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
//尝试从early缓存中获取
singletonObject = this.earlySingletonObjects.get(beanName);
if (singletonObject == null && allowEarlyReference) {
//这里控制了并发
synchronized (this.singletonObjects) {
// Consistent creation of early reference within full singleton lock
singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null) {
singletonObject = this.earlySingletonObjects.get(beanName);
if (singletonObject == null) {
ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
if (singletonFactory != null) {
//如果不存在于early缓存,则利用工厂构建对象,并加入到early缓存,防止创建多个对象
//这里也是early缓存的唯一的加入点
singletonObject = singletonFactory.getObject();
this.earlySingletonObjects.put(beanName, singletonObject);
this.singletonFactories.remove(beanName);
}
}
}
}
}
}
return singletonObject;
}
getSingleton
方法只是调用了工厂方法,并做些前置和后置的处理。后置处理会将对象加入到单例池中。
public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {
Assert.notNull(beanName, "Bean name must not be null");
synchronized (this.singletonObjects) {
Object singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null) {
if (this.singletonsCurrentlyInDestruction) {
throw new BeanCreationNotAllowedException(beanName,
"Singleton bean creation not allowed while singletons of this factory are in destruction " +
"(Do not request a bean from a BeanFactory in a destroy method implementation!)");
}
if (logger.isDebugEnabled()) {
logger.debug("Creating shared instance of singleton bean '" + beanName + "'");
}
//标志对象在处于创建流程
beforeSingletonCreation(beanName);
boolean newSingleton = false;
boolean recordSuppressedExceptions = (this.suppressedExceptions == null);
if (recordSuppressedExceptions) {
this.suppressedExceptions = new LinkedHashSet<>();
}
try {
singletonObject = singletonFactory.getObject();
newSingleton = true;
}
catch (IllegalStateException ex) {
// Has the singleton object implicitly appeared in the meantime ->
// if yes, proceed with it since the exception indicates that state.
singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null) {
throw ex;
}
}
catch (BeanCreationException ex) {
if (recordSuppressedExceptions) {
for (Exception suppressedException : this.suppressedExceptions) {
ex.addRelatedCause(suppressedException);
}
}
throw ex;
}
finally {
if (recordSuppressedExceptions) {
this.suppressedExceptions = null;
}
//标志对象结束创建流程
afterSingletonCreation(beanName);
}
if (newSingleton) {
//加入到单例缓存中
addSingleton(beanName, singletonObject);
}
}
return singletonObject;
}
}
protected void addSingleton(String beanName, Object singletonObject) {
synchronized (this.singletonObjects) {
this.singletonObjects.put(beanName, singletonObject);
this.singletonFactories.remove(beanName);
this.earlySingletonObjects.remove(beanName);
this.registeredSingletons.add(beanName);
}
}
比较重要的就是工厂方法中的内容:
protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
throws BeanCreationException {
...
try {
// Give BeanPostProcessors a chance to return a proxy instead of the target bean instance.
Object bean = resolveBeforeInstantiation(beanName, mbdToUse);
if (bean != null) {
return bean;
}
}
catch (Throwable ex) {
throw new BeanCreationException(mbdToUse.getResourceDescription(), beanName,
"BeanPostProcessor before instantiation of bean failed", ex);
}
try {
//创建bean
Object beanInstance = doCreateBean(beanName, mbdToUse, args);
if (logger.isTraceEnabled()) {
logger.trace("Finished creating instance of bean '" + beanName + "'");
}
return beanInstance;
}
catch (BeanCreationException | ImplicitlyAppearedSingletonException ex) {
// A previously detected exception with proper bean creation context already,
// or illegal singleton state to be communicated up to DefaultSingletonBeanRegistry.
throw ex;
}
catch (Throwable ex) {
throw new BeanCreationException(
mbdToUse.getResourceDescription(), beanName, "Unexpected exception during bean creation", ex);
}
}
继续追踪得到:
Object doCreateBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
throws BeanCreationException {
// Instantiate the bean.
BeanWrapper instanceWrapper = null;
if (mbd.isSingleton()) {
instanceWrapper = this.factoryBeanInstanceCache.remove(beanName);
}
if (instanceWrapper == null) {
//创建具体的bean
instanceWrapper = createBeanInstance(beanName, mbd, args);
}
Object bean = instanceWrapper.getWrappedInstance();
...
//在自动注入和调用其它生命周期之前,将对象加入到singletonFactories中,来避免循环依赖
// Eagerly cache singletons to be able to resolve circular references
// even when triggered by lifecycle interfaces like BeanFactoryAware.
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {
if (logger.isTraceEnabled()) {
logger.trace("Eagerly caching bean '" + beanName +
"' to allow for resolving potential circular references");
}
//这里注册了一个工厂对象,它会执行aop增强等内容
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
}
// Initialize the bean instance.
Object exposedObject = bean;
try {
//注入成员
populateBean(beanName, mbd, instanceWrapper);
//初始化对象,调用BeanPostProcessors
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
catch (Throwable ex) {
if (ex instanceof BeanCreationException && beanName.equals(((BeanCreationException) ex).getBeanName())) {
throw (BeanCreationException) ex;
}
else {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Initialization of bean failed", ex);
}
}
//如果允许单例提前曝光
if (earlySingletonExposure) {
//如果之前没有循环引用,则这里会从factory里创建一个bean的增强对象,否则会从缓存中取
Object earlySingletonReference = getSingleton(beanName, false);
if (earlySingletonReference != null) {
//单例后来没有被替换,则复用之前强化后的结果(aop增强等)
if (exposedObject == bean) {
exposedObject = earlySingletonReference;
}
//否则比较复杂
else if (!this.allowRawInjectionDespiteWrapping && hasDependentBean(beanName)) {
//如果这个bean的代理对象被注入到任意一个bean中了,那么就直接抛出异常
//这里也说明了自定义的BeanPostPorcessor的修改,aop的修改在循环引用情况下同时发生会导致异常
String[] dependentBeans = getDependentBeans(beanName);
Set<String> actualDependentBeans = new LinkedHashSet<>(dependentBeans.length);
for (String dependentBean : dependentBeans) {
if (!removeSingletonIfCreatedForTypeCheckOnly(dependentBean)) {
actualDependentBeans.add(dependentBean);
}
}
if (!actualDependentBeans.isEmpty()) {
throw new BeanCurrentlyInCreationException(beanName,
"Bean with name '" + beanName + "' has been injected into other beans [" +
StringUtils.collectionToCommaDelimitedString(actualDependentBeans) +
"] in its raw version as part of a circular reference, but has eventually been " +
"wrapped. This means that said other beans do not use the final version of the " +
"bean. This is often the result of over-eager type matching - consider using " +
"'getBeanNamesForType' with the 'allowEagerInit' flag turned off, for example.");
}
}
}
}
...
}
其中getEarlyBeanReference
是一个比较重要的方法,考虑到Spring中大量使用了代理,而注入的时候自然需要代理已经被创建完成。但是代理的创建一般发生在初始化完成raw实例后才发生,因此在循环引用的时候会出问题。故这里允许提前对对象进行代理。
protected Object getEarlyBeanReference(String beanName, RootBeanDefinition mbd, Object bean) {
Object exposedObject = bean;
if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
for (SmartInstantiationAwareBeanPostProcessor bp : getBeanPostProcessorCache().smartInstantiationAware) {
//org.springframework.aop.aspectj.annotation.AnnotationAwareAspectJAutoProxyCreator负责aop工作,生成一个新的代理,它的getEarlyBeanReference和postProcessAfterInitialization方法都会调用wrapIfNecessary方法,其中会为对象创建对应的代理
exposedObject = bp.getEarlyBeanReference(exposedObject, beanName);
}
}
return exposedObject;
}
在createBeanInstance
的时候用的是反射的方式来创建对象:
protected BeanWrapper createBeanInstance(String beanName, RootBeanDefinition mbd, @Nullable Object[] args) {
// Make sure bean class is actually resolved at this point.
Class<?> beanClass = resolveBeanClass(mbd, beanName);
if (beanClass != null && !Modifier.isPublic(beanClass.getModifiers()) && !mbd.isNonPublicAccessAllowed()) {
throw new BeanCreationException(mbd.getResourceDescription(), beanName,
"Bean class isn't public, and non-public access not allowed: " + beanClass.getName());
}
Supplier<?> instanceSupplier = mbd.getInstanceSupplier();
if (instanceSupplier != null) {
return obtainFromSupplier(instanceSupplier, beanName);
}
if (mbd.getFactoryMethodName() != null) {
return instantiateUsingFactoryMethod(beanName, mbd, args);
}
// Shortcut when re-creating the same bean...
boolean resolved = false;
boolean autowireNecessary = false;
if (args == null) {
synchronized (mbd.constructorArgumentLock) {
if (mbd.resolvedConstructorOrFactoryMethod != null) {
resolved = true;
autowireNecessary = mbd.constructorArgumentsResolved;
}
}
}
if (resolved) {
if (autowireNecessary) {
return autowireConstructor(beanName, mbd, null, null);
}
else {
return instantiateBean(beanName, mbd);
}
}
// Candidate constructors for autowiring?
Constructor<?>[] ctors = determineConstructorsFromBeanPostProcessors(beanClass, beanName);
if (ctors != null || mbd.getResolvedAutowireMode() == AUTOWIRE_CONSTRUCTOR ||
mbd.hasConstructorArgumentValues() || !ObjectUtils.isEmpty(args)) {
return autowireConstructor(beanName, mbd, ctors, args);
}
// Preferred constructors for default construction?
ctors = mbd.getPreferredConstructors();
if (ctors != null) {
return autowireConstructor(beanName, mbd, ctors, null);
}
// No special handling: simply use no-arg constructor.
return instantiateBean(beanName, mbd);
}
这里创建的对象还是一个raw对象,没有执行注入操作。注入操作发生在populateBean
方法中。看看源码:
protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) {
...
boolean hasInstAwareBpps = hasInstantiationAwareBeanPostProcessors();
boolean needsDepCheck = (mbd.getDependencyCheck() != AbstractBeanDefinition.DEPENDENCY_CHECK_NONE);
PropertyDescriptor[] filteredPds = null;
if (hasInstAwareBpps) {
//实现注入
if (pvs == null) {
pvs = mbd.getPropertyValues();
}
for (InstantiationAwareBeanPostProcessor bp : getBeanPostProcessorCache().instantiationAware) {
//@resource由class org.springframework.context.annotation.CommonAnnotationBeanPostProcessor负责注入
//@autowire由class org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor负责注入
//两者的实现基本雷同,可以认为@resource和@autowire是相同的作用
PropertyValues pvsToUse = bp.postProcessProperties(pvs, bw.getWrappedInstance(), beanName);
if (pvsToUse == null) {
if (filteredPds == null) {
filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching);
}
pvsToUse = bp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName);
if (pvsToUse == null) {
return;
}
}
pvs = pvsToUse;
}
}
...
}
最后需要调用BeanPostProcessor来替代原来的对象,代码是调用initializeBean
。
protected Object initializeBean(String beanName, Object bean, @Nullable RootBeanDefinition mbd) {
if (System.getSecurityManager() != null) {
AccessController.doPrivileged((PrivilegedAction<Object>) () -> {
invokeAwareMethods(beanName, bean);
return null;
}, getAccessControlContext());
}
else {
invokeAwareMethods(beanName, bean);
}
Object wrappedBean = bean;
if (mbd == null || !mbd.isSynthetic()) {
//调用BeanPostProcessor替代原来的Bean
wrappedBean = applyBeanPostProcessorsBeforeInitialization(wrappedBean, beanName);
}
try {
//调用初始化方法,需要Bean实现InitializingBean
invokeInitMethods(beanName, wrappedBean, mbd);
}
catch (Throwable ex) {
throw new BeanCreationException(
(mbd != null ? mbd.getResourceDescription() : null),
beanName, "Invocation of init method failed", ex);
}
if (mbd == null || !mbd.isSynthetic()) {
//再次调用后置处理器,这次调用的是postProcessAfterInitialization
wrappedBean = applyBeanPostProcessorsAfterInitialization(wrappedBean, beanName);
}
return wrappedBean;
}
其中applyBeanPostProcessorsBeforeInitialization
会调用Bean后置处理器。
@Override
public Object applyBeanPostProcessorsBeforeInitialization(Object existingBean, String beanName)
throws BeansException {
Object result = existingBean;
for (BeanPostProcessor processor : getBeanPostProcessors()) {
//调用后置处理器,后置处理
//class org.springframework.context.annotation.CommonAnnotationBeanPostProcessor会处理postConstruct等注解
Object current = processor.postProcessBeforeInitialization(result, beanName);
if (current == null) {
return result;
}
result = current;
}
return result;
}
IOC
IOC全意为控制反转。传统情况下,A依赖B,则会在A中new一个B。但是这样会导致A对B的强耦合(A知道了B的具体实现,这意味着如果之后出现一个B的更加高效的B的实现类,那么A必须通过重写代码才能使用新的实现类)。依赖注入是一种控制反转的实现方式,A的组件将不通过A中的代码创建,而是由外部传入。这样话仅仅外部的代码出现了耦合。而外部的代码一般由容器提供,比如spring。
spring boot的自动装配
spring boot中提供了@Import
注解,这个注解会将一些类作为BeanDefinition
加入到Spring中,而不需要使用Component
等注解。下面是mybatis的MapperScan
类的内容:
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE})
@Documented
@Import({MapperScannerRegistrar.class})
@Repeatable(MapperScans.class)
public @interface MapperScan {
...
}
同时如果一个Bean实现了ImportSelector
接口,那么它的selectImports
方法的返回值也会被作为BeanDefinition
加入到Spring中。比如下面是缓存相关的一个ImportSelector。
static class CacheConfigurationImportSelector implements ImportSelector {
@Override
public String[] selectImports(AnnotationMetadata importingClassMetadata) {
CacheType[] types = CacheType.values();
String[] imports = new String[types.length];
for (int i = 0; i < types.length; i++) {
imports[i] = CacheConfigurations.getConfigurationClass(types[i]);
}
return imports;
}
}
还有一种比较重要的接口,叫做ImportBeanDefinitionRegistrar
,它可以自由地增加一些自定义的BeanDefinition。比如之前代码中出现的MapperScannerRegistrar
就实现了这个接口,其中加入了MapperScannerConfigurer
类。
public class MapperScannerRegistrar implements ImportBeanDefinitionRegistrar, ResourceLoaderAware {
public void registerBeanDefinitions(AnnotationMetadata importingClassMetadata, BeanDefinitionRegistry registry) {
AnnotationAttributes mapperScanAttrs = AnnotationAttributes.fromMap(importingClassMetadata.getAnnotationAttributes(MapperScan.class.getName()));
if (mapperScanAttrs != null) {
this.registerBeanDefinitions(importingClassMetadata, mapperScanAttrs, registry, generateBaseBeanName(importingClassMetadata, 0));
}
}
void registerBeanDefinitions(AnnotationMetadata annoMeta, AnnotationAttributes annoAttrs, BeanDefinitionRegistry registry, String beanName) {
BeanDefinitionBuilder builder = BeanDefinitionBuilder.genericBeanDefinition(MapperScannerConfigurer.class);
builder.addPropertyValue("processPropertyPlaceHolders", true);
Class<? extends Annotation> annotationClass = annoAttrs.getClass("annotationClass");
if (!Annotation.class.equals(annotationClass)) {
builder.addPropertyValue("annotationClass", annotationClass);
}
Class<?> markerInterface = annoAttrs.getClass("markerInterface");
if (!Class.class.equals(markerInterface)) {
builder.addPropertyValue("markerInterface", markerInterface);
}
Class<? extends BeanNameGenerator> generatorClass = annoAttrs.getClass("nameGenerator");
if (!BeanNameGenerator.class.equals(generatorClass)) {
builder.addPropertyValue("nameGenerator", BeanUtils.instantiateClass(generatorClass));
}
Class<? extends MapperFactoryBean> mapperFactoryBeanClass = annoAttrs.getClass("factoryBean");
if (!MapperFactoryBean.class.equals(mapperFactoryBeanClass)) {
builder.addPropertyValue("mapperFactoryBeanClass", mapperFactoryBeanClass);
}
String sqlSessionTemplateRef = annoAttrs.getString("sqlSessionTemplateRef");
if (StringUtils.hasText(sqlSessionTemplateRef)) {
builder.addPropertyValue("sqlSessionTemplateBeanName", annoAttrs.getString("sqlSessionTemplateRef"));
}
String sqlSessionFactoryRef = annoAttrs.getString("sqlSessionFactoryRef");
if (StringUtils.hasText(sqlSessionFactoryRef)) {
builder.addPropertyValue("sqlSessionFactoryBeanName", annoAttrs.getString("sqlSessionFactoryRef"));
}
List<String> basePackages = new ArrayList();
basePackages.addAll((Collection)Arrays.stream(annoAttrs.getStringArray("value")).filter(StringUtils::hasText).collect(Collectors.toList()));
basePackages.addAll((Collection)Arrays.stream(annoAttrs.getStringArray("basePackages")).filter(StringUtils::hasText).collect(Collectors.toList()));
basePackages.addAll((Collection)Arrays.stream(annoAttrs.getClassArray("basePackageClasses")).map(ClassUtils::getPackageName).collect(Collectors.toList()));
if (basePackages.isEmpty()) {
basePackages.add(getDefaultBasePackage(annoMeta));
}
String lazyInitialization = annoAttrs.getString("lazyInitialization");
if (StringUtils.hasText(lazyInitialization)) {
builder.addPropertyValue("lazyInitialization", lazyInitialization);
}
String defaultScope = annoAttrs.getString("defaultScope");
if (!"".equals(defaultScope)) {
builder.addPropertyValue("defaultScope", defaultScope);
}
builder.addPropertyValue("basePackage", StringUtils.collectionToCommaDelimitedString(basePackages));
registry.registerBeanDefinition(beanName, builder.getBeanDefinition());
}
}
我们也可以尝试写一个自己的ImportBeanDefinitionRegistrar
的实现类,通过SPI机制来从META-INF/spring.factories
文件中加载具体的类型。先创建一个类型:
public class CustomAutoConfiguration implements ImportBeanDefinitionRegistrar, BeanClassLoaderAware {
ClassLoader loader;
@Override
public void setBeanClassLoader(ClassLoader classLoader) {
this.loader = classLoader;
}
@Override
public void registerBeanDefinitions(AnnotationMetadata importingClassMetadata, BeanDefinitionRegistry registry) {
List<String> names = SpringFactoriesLoader.loadFactoryNames(CustomAutoConfiguration.class, loader);
for (String name : names) {
if (registry.containsBeanDefinition(name)) {
continue;
}
BeanDefinitionBuilder builder = BeanDefinitionBuilder.genericBeanDefinition(name);
registry.registerBeanDefinition(name, builder.getBeanDefinition());
}
}
}
之后在META-INF/spring.factories
下面加入以下内容
com.daltao.registrar.CustomAutoConfiguration=\
com.daltao.service.A,\
com.daltao.service.B,\
com.daltao.service.C
之后是启动类:
@SpringBootApplication
@Import(CustomAutoConfiguration.class)
public class Application {
public static void main(String[] args) throws Exception {
ConfigurableApplicationContext run = SpringApplication.run(Application.class, args);
System.out.println(run.getBean(A.class));
System.out.println(run.getBean(B.class));
System.out.println(run.getBean(C.class));
}
}
可以发现即使A,B,C
上没有加Component注解,也会被加入到IOC容器当中。
接下来我们考虑SpringBootApplication
这个注解中自带的注册方式。
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@SpringBootConfiguration
@EnableAutoConfiguration
@ComponentScan(excludeFilters = { @Filter(type = FilterType.CUSTOM, classes = TypeExcludeFilter.class),
@Filter(type = FilterType.CUSTOM, classes = AutoConfigurationExcludeFilter.class) })
public @interface SpringBootApplication {
...
}
其中EnableAutoConfiguration
会允许自动注册。
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Inherited
@AutoConfigurationPackage
@Import(AutoConfigurationImportSelector.class)
public @interface EnableAutoConfiguration {
/**
* Environment property that can be used to override when auto-configuration is
* enabled.
*/
String ENABLED_OVERRIDE_PROPERTY = "spring.boot.enableautoconfiguration";
/**
* Exclude specific auto-configuration classes such that they will never be applied.
* @return the classes to exclude
*/
Class<?>[] exclude() default {};
/**
* Exclude specific auto-configuration class names such that they will never be
* applied.
* @return the class names to exclude
* @since 1.3.0
*/
String[] excludeName() default {};
}
其中引入了AutoConfigurationImportSelector
。再继续看下去。
public class AutoConfigurationImportSelector implements DeferredImportSelector, BeanClassLoaderAware,
ResourceLoaderAware, BeanFactoryAware, EnvironmentAware, Ordered {
@Override
public String[] selectImports(AnnotationMetadata annotationMetadata) {
if (!isEnabled(annotationMetadata)) {
return NO_IMPORTS;
}
AutoConfigurationEntry autoConfigurationEntry = getAutoConfigurationEntry(annotationMetadata);
return StringUtils.toStringArray(autoConfigurationEntry.getConfigurations());
}
protected AutoConfigurationEntry getAutoConfigurationEntry(AnnotationMetadata annotationMetadata) {
if (!isEnabled(annotationMetadata)) {
return EMPTY_ENTRY;
}
AnnotationAttributes attributes = getAttributes(annotationMetadata);
List<String> configurations = getCandidateConfigurations(annotationMetadata, attributes);
configurations = removeDuplicates(configurations);
Set<String> exclusions = getExclusions(annotationMetadata, attributes);
checkExcludedClasses(configurations, exclusions);
configurations.removeAll(exclusions);
configurations = getConfigurationClassFilter().filter(configurations);
fireAutoConfigurationImportEvents(configurations, exclusions);
return new AutoConfigurationEntry(configurations, exclusions);
}
protected List<String> getCandidateConfigurations(AnnotationMetadata metadata, AnnotationAttributes attributes) {
//这里去spring.factories文件中查找EnableAutoConfiguration的相关类型
List<String> configurations = SpringFactoriesLoader.loadFactoryNames(getSpringFactoriesLoaderFactoryClass(),
getBeanClassLoader());
Assert.notEmpty(configurations, "No auto configuration classes found in META-INF/spring.factories. If you "
+ "are using a custom packaging, make sure that file is correct.");
return configurations;
}
protected Class<?> getSpringFactoriesLoaderFactoryClass() {
return EnableAutoConfiguration.class;
}
}
而在spring-boot-autoconfigure
下的spring.factories
文件中,已经手写了非常多的与EnableAutoConfiguration
相关的配置类。
# Auto Configure
org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
org.springframework.boot.autoconfigure.admin.SpringApplicationAdminJmxAutoConfiguration,\
org.springframework.boot.autoconfigure.aop.AopAutoConfiguration,\
org.springframework.boot.autoconfigure.amqp.RabbitAutoConfiguration,\
org.springframework.boot.autoconfigure.batch.BatchAutoConfiguration,\
org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration,\
org.springframework.boot.autoconfigure.cassandra.CassandraAutoConfiguration,\
org.springframework.boot.autoconfigure.context.ConfigurationPropertiesAutoConfiguration,\
org.springframework.boot.autoconfigure.context.LifecycleAutoConfiguration,\
org.springframework.boot.autoconfigure.context.MessageSourceAutoConfiguration,\
org.springframework.boot.autoconfigure.context.PropertyPlaceholderAutoConfiguration,\
org.springframework.boot.autoconfigure.couchbase.CouchbaseAutoConfiguration,\
org.springframework.boot.autoconfigure.dao.PersistenceExceptionTranslationAutoConfiguration,\
org.springframework.boot.autoconfigure.data.cassandra.CassandraDataAutoConfiguration,\
org.springframework.boot.autoconfigure.data.cassandra.CassandraReactiveDataAutoConfiguration,\
org.springframework.boot.autoconfigure.data.cassandra.CassandraReactiveRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.cassandra.CassandraRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.couchbase.CouchbaseDataAutoConfiguration,\
org.springframework.boot.autoconfigure.data.couchbase.CouchbaseReactiveDataAutoConfiguration,\
org.springframework.boot.autoconfigure.data.couchbase.CouchbaseReactiveRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.couchbase.CouchbaseRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.elasticsearch.ElasticsearchDataAutoConfiguration,\
org.springframework.boot.autoconfigure.data.elasticsearch.ElasticsearchRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.elasticsearch.ReactiveElasticsearchRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.elasticsearch.ReactiveElasticsearchRestClientAutoConfiguration,\
org.springframework.boot.autoconfigure.data.jdbc.JdbcRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.jpa.JpaRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.ldap.LdapRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.mongo.MongoDataAutoConfiguration,\
org.springframework.boot.autoconfigure.data.mongo.MongoReactiveDataAutoConfiguration,\
org.springframework.boot.autoconfigure.data.mongo.MongoReactiveRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.mongo.MongoRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.neo4j.Neo4jDataAutoConfiguration,\
org.springframework.boot.autoconfigure.data.neo4j.Neo4jReactiveDataAutoConfiguration,\
org.springframework.boot.autoconfigure.data.neo4j.Neo4jReactiveRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.neo4j.Neo4jRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.solr.SolrRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.r2dbc.R2dbcDataAutoConfiguration,\
org.springframework.boot.autoconfigure.data.r2dbc.R2dbcRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.redis.RedisAutoConfiguration,\
org.springframework.boot.autoconfigure.data.redis.RedisReactiveAutoConfiguration,\
org.springframework.boot.autoconfigure.data.redis.RedisRepositoriesAutoConfiguration,\
org.springframework.boot.autoconfigure.data.rest.RepositoryRestMvcAutoConfiguration,\
org.springframework.boot.autoconfigure.data.web.SpringDataWebAutoConfiguration,\
org.springframework.boot.autoconfigure.elasticsearch.ElasticsearchRestClientAutoConfiguration,\
org.springframework.boot.autoconfigure.flyway.FlywayAutoConfiguration,\
org.springframework.boot.autoconfigure.freemarker.FreeMarkerAutoConfiguration,\
org.springframework.boot.autoconfigure.groovy.template.GroovyTemplateAutoConfiguration,\
org.springframework.boot.autoconfigure.gson.GsonAutoConfiguration,\
org.springframework.boot.autoconfigure.h2.H2ConsoleAutoConfiguration,\
org.springframework.boot.autoconfigure.hateoas.HypermediaAutoConfiguration,\
org.springframework.boot.autoconfigure.hazelcast.HazelcastAutoConfiguration,\
org.springframework.boot.autoconfigure.hazelcast.HazelcastJpaDependencyAutoConfiguration,\
org.springframework.boot.autoconfigure.http.HttpMessageConvertersAutoConfiguration,\
org.springframework.boot.autoconfigure.http.codec.CodecsAutoConfiguration,\
org.springframework.boot.autoconfigure.influx.InfluxDbAutoConfiguration,\
org.springframework.boot.autoconfigure.info.ProjectInfoAutoConfiguration,\
org.springframework.boot.autoconfigure.integration.IntegrationAutoConfiguration,\
org.springframework.boot.autoconfigure.jackson.JacksonAutoConfiguration,\
org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration,\
org.springframework.boot.autoconfigure.jdbc.JdbcTemplateAutoConfiguration,\
org.springframework.boot.autoconfigure.jdbc.JndiDataSourceAutoConfiguration,\
org.springframework.boot.autoconfigure.jdbc.XADataSourceAutoConfiguration,\
org.springframework.boot.autoconfigure.jdbc.DataSourceTransactionManagerAutoConfiguration,\
org.springframework.boot.autoconfigure.jms.JmsAutoConfiguration,\
org.springframework.boot.autoconfigure.jmx.JmxAutoConfiguration,\
org.springframework.boot.autoconfigure.jms.JndiConnectionFactoryAutoConfiguration,\
org.springframework.boot.autoconfigure.jms.activemq.ActiveMQAutoConfiguration,\
org.springframework.boot.autoconfigure.jms.artemis.ArtemisAutoConfiguration,\
org.springframework.boot.autoconfigure.jersey.JerseyAutoConfiguration,\
org.springframework.boot.autoconfigure.jooq.JooqAutoConfiguration,\
org.springframework.boot.autoconfigure.jsonb.JsonbAutoConfiguration,\
org.springframework.boot.autoconfigure.kafka.KafkaAutoConfiguration,\
org.springframework.boot.autoconfigure.availability.ApplicationAvailabilityAutoConfiguration,\
org.springframework.boot.autoconfigure.ldap.embedded.EmbeddedLdapAutoConfiguration,\
org.springframework.boot.autoconfigure.ldap.LdapAutoConfiguration,\
org.springframework.boot.autoconfigure.liquibase.LiquibaseAutoConfiguration,\
org.springframework.boot.autoconfigure.mail.MailSenderAutoConfiguration,\
org.springframework.boot.autoconfigure.mail.MailSenderValidatorAutoConfiguration,\
org.springframework.boot.autoconfigure.mongo.embedded.EmbeddedMongoAutoConfiguration,\
org.springframework.boot.autoconfigure.mongo.MongoAutoConfiguration,\
org.springframework.boot.autoconfigure.mongo.MongoReactiveAutoConfiguration,\
org.springframework.boot.autoconfigure.mustache.MustacheAutoConfiguration,\
org.springframework.boot.autoconfigure.neo4j.Neo4jAutoConfiguration,\
org.springframework.boot.autoconfigure.orm.jpa.HibernateJpaAutoConfiguration,\
org.springframework.boot.autoconfigure.quartz.QuartzAutoConfiguration,\
org.springframework.boot.autoconfigure.r2dbc.R2dbcAutoConfiguration,\
org.springframework.boot.autoconfigure.r2dbc.R2dbcTransactionManagerAutoConfiguration,\
org.springframework.boot.autoconfigure.rsocket.RSocketMessagingAutoConfiguration,\
org.springframework.boot.autoconfigure.rsocket.RSocketRequesterAutoConfiguration,\
org.springframework.boot.autoconfigure.rsocket.RSocketServerAutoConfiguration,\
org.springframework.boot.autoconfigure.rsocket.RSocketStrategiesAutoConfiguration,\
org.springframework.boot.autoconfigure.security.servlet.SecurityAutoConfiguration,\
org.springframework.boot.autoconfigure.security.servlet.UserDetailsServiceAutoConfiguration,\
org.springframework.boot.autoconfigure.security.servlet.SecurityFilterAutoConfiguration,\
org.springframework.boot.autoconfigure.security.reactive.ReactiveSecurityAutoConfiguration,\
org.springframework.boot.autoconfigure.security.reactive.ReactiveUserDetailsServiceAutoConfiguration,\
org.springframework.boot.autoconfigure.security.rsocket.RSocketSecurityAutoConfiguration,\
org.springframework.boot.autoconfigure.security.saml2.Saml2RelyingPartyAutoConfiguration,\
org.springframework.boot.autoconfigure.sendgrid.SendGridAutoConfiguration,\
org.springframework.boot.autoconfigure.session.SessionAutoConfiguration,\
org.springframework.boot.autoconfigure.security.oauth2.client.servlet.OAuth2ClientAutoConfiguration,\
org.springframework.boot.autoconfigure.security.oauth2.client.reactive.ReactiveOAuth2ClientAutoConfiguration,\
org.springframework.boot.autoconfigure.security.oauth2.resource.servlet.OAuth2ResourceServerAutoConfiguration,\
org.springframework.boot.autoconfigure.security.oauth2.resource.reactive.ReactiveOAuth2ResourceServerAutoConfiguration,\
org.springframework.boot.autoconfigure.solr.SolrAutoConfiguration,\
org.springframework.boot.autoconfigure.task.TaskExecutionAutoConfiguration,\
org.springframework.boot.autoconfigure.task.TaskSchedulingAutoConfiguration,\
org.springframework.boot.autoconfigure.thymeleaf.ThymeleafAutoConfiguration,\
org.springframework.boot.autoconfigure.transaction.TransactionAutoConfiguration,\
org.springframework.boot.autoconfigure.transaction.jta.JtaAutoConfiguration,\
org.springframework.boot.autoconfigure.validation.ValidationAutoConfiguration,\
org.springframework.boot.autoconfigure.web.client.RestTemplateAutoConfiguration,\
org.springframework.boot.autoconfigure.web.embedded.EmbeddedWebServerFactoryCustomizerAutoConfiguration,\
org.springframework.boot.autoconfigure.web.reactive.HttpHandlerAutoConfiguration,\
org.springframework.boot.autoconfigure.web.reactive.ReactiveWebServerFactoryAutoConfiguration,\
org.springframework.boot.autoconfigure.web.reactive.WebFluxAutoConfiguration,\
org.springframework.boot.autoconfigure.web.reactive.error.ErrorWebFluxAutoConfiguration,\
org.springframework.boot.autoconfigure.web.reactive.function.client.ClientHttpConnectorAutoConfiguration,\
org.springframework.boot.autoconfigure.web.reactive.function.client.WebClientAutoConfiguration,\
org.springframework.boot.autoconfigure.web.servlet.DispatcherServletAutoConfiguration,\
org.springframework.boot.autoconfigure.web.servlet.ServletWebServerFactoryAutoConfiguration,\
org.springframework.boot.autoconfigure.web.servlet.error.ErrorMvcAutoConfiguration,\
org.springframework.boot.autoconfigure.web.servlet.HttpEncodingAutoConfiguration,\
org.springframework.boot.autoconfigure.web.servlet.MultipartAutoConfiguration,\
org.springframework.boot.autoconfigure.web.servlet.WebMvcAutoConfiguration,\
org.springframework.boot.autoconfigure.websocket.reactive.WebSocketReactiveAutoConfiguration,\
org.springframework.boot.autoconfigure.websocket.servlet.WebSocketServletAutoConfiguration,\
org.springframework.boot.autoconfigure.websocket.servlet.WebSocketMessagingAutoConfiguration,\
org.springframework.boot.autoconfigure.webservices.WebServicesAutoConfiguration,\
org.springframework.boot.autoconfigure.webservices.client.WebServiceTemplateAutoConfiguration
当然这么多类需要进行装配,很显然是非常慢的,但是实际上我们启动一个简单的Spring boot项目的时候并不会装配所有的Bean,因为它们的类型上都有通过Conditional
注解来描述一些特殊条件,只有这些条件满足了才会装配。比如CacheAutoConfiguration
。
@Configuration(proxyBeanMethods = false)
@ConditionalOnClass(CacheManager.class)
@ConditionalOnBean(CacheAspectSupport.class)
@ConditionalOnMissingBean(value = CacheManager.class, name = "cacheResolver")
@EnableConfigurationProperties(CacheProperties.class)
@AutoConfigureAfter({ CouchbaseDataAutoConfiguration.class, HazelcastAutoConfiguration.class,
HibernateJpaAutoConfiguration.class, RedisAutoConfiguration.class })
@Import({ CacheConfigurationImportSelector.class, CacheManagerEntityManagerFactoryDependsOnPostProcessor.class })
public class CacheAutoConfiguration {
}
redis
redis的过期时间
注意redis对象中的单个元素是不能设置的独立的过期时间的,因为过期时间仅对redis对象有效。
/* Redis database representation. There are multiple databases identified
* by integers from 0 (the default database) up to the max configured
* database. The database number is the 'id' field in the structure. */
typedef struct redisDb {
//键空间
dict *dict; /* The keyspace for this DB */
//所有键的过期时间
dict *expires; /* Timeout of keys with a timeout set */
} redisDb;
可以通过expire命令设置过期时间。当设置的过期时间小于当前的系统时间的时候,那么redis会直接删除对象。
/* Set an expire to the specified key. If the expire is set in the context
* of an user calling a command 'c' is the client, otherwise 'c' is set
* to NULL. The 'when' parameter is the absolute unix time in milliseconds
* after which the key will no longer be considered valid. */
void setExpire(client *c, redisDb *db, robj *key, long long when) {
dictEntry *kde, *de;
/* Reuse the sds from the main dict in the expire dict */
kde = dictFind(db->dict,key->ptr);
serverAssertWithInfo(NULL,key,kde != NULL);
//设置过期时间(用同一个key对象)
de = dictAddOrFind(db->expires,dictGetKey(kde));
dictSetSignedIntegerVal(de,when);
int writable_slave = server.masterhost && server.repl_slave_ro == 0;
if (c && writable_slave && !(c->flags & CLIENT_MASTER))
rememberSlaveKeyWithExpire(db,key);
}
/* This is the generic command implementation for EXPIRE, PEXPIRE, EXPIREAT
* and PEXPIREAT. Because the commad second argument may be relative or absolute
* the "basetime" argument is used to signal what the base time is (either 0
* for *AT variants of the command, or the current time for relative expires).
*
* unit is either UNIT_SECONDS or UNIT_MILLISECONDS, and is only used for
* the argv[2] parameter. The basetime is always specified in milliseconds. */
void expireGenericCommand(client *c, long long basetime, int unit) {
robj *key = c->argv[1], *param = c->argv[2];
long long when; /* unix time in milliseconds when the key will expire. */
if (getLongLongFromObjectOrReply(c, param, &when, NULL) != C_OK)
return;
if (unit == UNIT_SECONDS) when *= 1000;
when += basetime;
/* No key, return zero. */
if (lookupKeyWrite(c->db,key) == NULL) {
//找不到key
addReply(c,shared.czero);
return;
}
/* EXPIRE with negative TTL, or EXPIREAT with a timestamp into the past
* should never be executed as a DEL when load the AOF or in the context
* of a slave instance.
*
* Instead we take the other branch of the IF statement setting an expire
* (possibly in the past) and wait for an explicit DEL from the master. */
if (when <= mstime() && !server.loading && !server.masterhost) {
//在过去过期,就是删除啦
robj *aux;
int deleted = server.lazyfree_lazy_expire ? dbAsyncDelete(c->db,key) :
dbSyncDelete(c->db,key);
serverAssertWithInfo(c,key,deleted);
server.dirty++;
/* Replicate/AOF this as an explicit DEL or UNLINK. */
aux = server.lazyfree_lazy_expire ? shared.unlink : shared.del;
rewriteClientCommandVector(c,2,aux,key);
signalModifiedKey(c,c->db,key);
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id);
addReply(c, shared.cone);
return;
} else {
//设一下过期时间
setExpire(c,c->db,key,when);
addReply(c,shared.cone);
signalModifiedKey(c,c->db,key);
notifyKeyspaceEvent(NOTIFY_GENERIC,"expire",key,c->db->id);
server.dirty++;
return;
}
}
也可以用persist命令去除某个对象的过期时间。
对象的释放
键的删除分为定时删除和惰性删除两种。
可以使用lazyfree_lazy_server_del开启异步删除。如果对象比较大且是立即被释放(引用计数为1),则会走异步,否则释放走同步。
/* This is a wrapper whose behavior depends on the Redis lazy free
* configuration. Deletes the key synchronously or asynchronously. */
//删除对象
int dbDelete(redisDb *db, robj *key) {
return server.lazyfree_lazy_server_del ? dbAsyncDelete(db,key) :
dbSyncDelete(db,key);
}
//异步删除
int dbAsyncDelete(redisDb *db, robj *key) {
//从过期时间中删除key
/* Deleting an entry from the expires dict will not free the sds of
* the key, because it is shared with the main dictionary. */
if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);
/* If the value is composed of a few allocations, to free in a lazy way
* is actually just slower... So under a certain limit we just free
* the object synchronously. */
dictEntry *de = dictUnlink(db->dict,key->ptr);
if (de) {
//存在于数据库
robj *val = dictGetVal(de);
//大概删除费时
size_t free_effort = lazyfreeGetFreeEffort(val);
/* If releasing the object is too much work, do it in the background
* by adding the object to the lazy free list.
* Note that if the object is shared, to reclaim it now it is not
* possible. This rarely happens, however sometimes the implementation
* of parts of the Redis core may call incrRefCount() to protect
* objects, and then call dbDelete(). In this case we'll fall
* through and reach the dictFreeUnlinkedEntry() call, that will be
* equivalent to just calling decrRefCount(). */
if (free_effort > LAZYFREE_THRESHOLD && val->refcount == 1) {
//首先真的会删除,其次删除花的时间达到LAZYFREE_THRESHOLD才执行异步,否则就是浪费时间
atomicIncr(lazyfree_objects, 1);
//插入异步任务
bioCreateBackgroundJob(BIO_LAZY_FREE, val, NULL, NULL);
//值异步释放,因此这里把值设成NULL防止被后面的同步操作锁释放
dictSetVal(db->dict, de, NULL);
}
}
/* Release the key-val pair, or just the key if we set the val
* field to NULL in order to lazy free it later. */
if (de) {
dictFreeUnlinkedEntry(db->dict,de);
if (server.cluster_enabled) slotToKeyDel(key->ptr);
return 1;
} else {
return 0;
}
}
惰性删除是指每次客户端访问某个对象前都需要检查键是否过期。
/* This function is called when we are going to perform some operation
* in a given key, but such key may be already logically expired even if
* it still exists in the database. The main way this function is called
* is via lookupKey*() family of functions.
*
* The behavior of the function depends on the replication role of the
* instance, because slave instances do not expire keys, they wait
* for DELs from the master for consistency matters. However even
* slaves will try to have a coherent return value for the function,
* so that read commands executed in the slave side will be able to
* behave like if the key is expired even if still present (because the
* master has yet to propagate the DEL).
*
* In masters as a side effect of finding a key which is expired, such
* key will be evicted from the database. Also this may trigger the
* propagation of a DEL/UNLINK command in AOF / replication stream.
*
* The return value of the function is 0 if the key is still valid,
* otherwise the function returns 1 if the key is expired. */
int expireIfNeeded(redisDb *db, robj *key) {
//未过期
if (!keyIsExpired(db,key)) return 0;
/* If we are running in the context of a slave, instead of
* evicting the expired key from the database, we return ASAP:
* the slave key expiration is controlled by the master that will
* send us synthesized DEL operations for expired keys.
*
* Still we try to return the right information to the caller,
* that is, 0 if we think the key should be still valid, 1 if
* we think the key is expired at this time. */
//slave过期了不执行删除,但是只返回正确信息
if (server.masterhost != NULL) return 1;
/* Delete the key */
//真的删除
server.stat_expiredkeys++;
propagateExpire(db,key,server.lazyfree_lazy_expire);
notifyKeyspaceEvent(NOTIFY_EXPIRED,
"expired",key,db->id);
//同步还是异步删除
int retval = server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) :
dbSyncDelete(db,key);
if (retval) signalModifiedKey(NULL,db,key);
return retval;
}
/* Lookup a key for read operations, or return NULL if the key is not found
* in the specified DB.
*
* As a side effect of calling this function:
* 1. A key gets expired if it reached it's TTL.
* 2. The key last access time is updated.
* 3. The global keys hits/misses stats are updated (reported in INFO).
* 4. If keyspace notifications are enabled, a "keymiss" notification is fired.
*
* This API should not be used when we write to the key after obtaining
* the object linked to the key, but only for read only operations.
*
* Flags change the behavior of this command:
*
* LOOKUP_NONE (or zero): no special flags are passed.
* LOOKUP_NOTOUCH: don't alter the last access time of the key.
*
* Note: this function also returns NULL if the key is logically expired
* but still existing, in case this is a slave, since this API is called only
* for read operations. Even if the key expiry is master-driven, we can
* correctly report a key is expired on slaves even if the master is lagging
* expiring our key via DELs in the replication link. */
robj *lookupKeyReadWithFlags(redisDb *db, robj *key, int flags) {
robj *val;
if (expireIfNeeded(db,key) == 1) {
...
}
...
}
/* Lookup a key for write operations, and as a side effect, if needed, expires
* the key if its TTL is reached.
*
* Returns the linked value object if the key exists or NULL if the key
* does not exist in the specified DB. */
robj *lookupKeyWriteWithFlags(redisDb *db, robj *key, int flags) {
expireIfNeeded(db,key);
return lookupKey(db,key,flags);
}